國立中正學術成果資訊系統

Scopus

Article
1
Continuous homomorphisms and rings of injective dimension one
Chang S.T., Huang I.C.
Mathematica Scandinavica
 
2012, 110 (2) , 181-197
 
Article
2
An arithmetic property of fourier coefficients of singular modular forms on the exceptional domain
Chang S.T., Eie M.
Transactions of the American Mathematical Society
 
2001, 353 (2) , 539-556
 
Article
3
Betti numbers of modules of essentially monomial type
Chang S.T.E.
Proceedings of the American Mathematical Society
 
2000, 128 (7) , 1917-1926
 
Article
4
An algorithm for calculating Betti numbers of manageable modules
Chang S.T.
Taiwanese Journal of Mathematics
 
1999, 3 (3) , 367-379
 
Article
5
Betti numbers of modules of exponent two over regular local rings
Chang S.T.
Journal of Algebra
 
1997, 193 (2) , 640-659
 
Article
6
Hilbert-kunz functions and frobenius functors
Chang S.T.
Transactions of the American Mathematical Society
 
1997, 349 (3) , 1091-1119
 
6 筆資料,第 1/1 頁,每頁顯示 筆,到第
1

學術著作

1

Advanced Linear Algebra with an Introduction to Module Theory

Shou-Te Chang
2023 年 0 月
專書
2

A Course in Abstract Algebra, Second Edition

Minking Eie; Shou-Te Chang
2018 年 0 月
專書
3

A First Course in Linear Algebra

Minking Eie; Shou-Te Chang
2016 年 7 月
專書
4

A Course on Abstract Algebra

Minking Eie; Shou-Te Chang
2010 年 0 月
專書
5
”Hilbert-Kunz functions and Frobenius functors”
S.-T. Chang
Transactions of the A.M.S.
1997 年
Transactions of the A.M.S.,Vol.349, No.3,pp.1091-1119
期刊論文
6
”Betti numbers of modules of exponent two over regular local rings”
S.-T. Chang
Jour. of Algebra
1997 年
Jour. of Algebra,Vol.193, No.,pp.640-659
期刊論文
7
The asymptotic behavior of Hilbert-Kunz functions and their generalizations
S.-T. Chang
1993 年
專書
8
The asymptotic behavior of Hilbert-Kunz functions and their generalizations
S.-T. Chang
special session on Modules and Commutative Algebra for the 880th meeting of American Mathematical Society
1993 年
special session on Modules and Commutative Algebra for the 880th meeting of American Mathematical Society
研討會論文
8 筆資料,第 1/1 頁,每頁顯示 筆,到第
1